Add like
Add dislike
Add to saved papers

Polytetrafluoroethylene-assisted N/F co-doped hierarchically porous carbon as a high performance electrode for supercapacitors.

In this study, we propose a novel template and chemical activation method to fabricate the nitrogen and fluorine co-doped hierarchically porous carbon with polytetrafluoroethylene-polyaniline as the precursor and KOH as the activation reagent. The key to this strategy is the utilization of polytetrafluoroethylene as an additive during the process, which not only serves as a fluorine source but also acts as a template to increase the specific surface area. Moreover, polytetrafluoroethylene disappears after carbonization without requiring a complicated template-removal process. The as-prepared materials possess a favorable hierarchical porous structure that is conductive to the transportation and diffusion of ions. They also acquire effective nitrogen and fluorine co-doping to further improve the electrochemical performance. The optimized carbon material displays a high specific capacitance (291 F g-1 at 0.5 A g-1 ) and maintains 180 F g-1 even at 100 A g-1 in 6 M KOH. Moreover, it presents an excellent cycling performance with 95.5% capacitance retention after 10,000 cycles. The fabricated symmetric supercapacitor delivers high energy densities of 12.91 Wh kg-1 . These results represent a new performance record for nitrogen and fluorine co-doped porous carbon-based supercapacitors, rendering the polytetrafluoroethylene particles to be a promising template for producing porous carbon materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app