Add like
Add dislike
Add to saved papers

Ferulic acid esterase-producing lactic acid bacteria and cellulase pretreatments of corn stalk silage at two different temperatures: Ensiling characteristics, carbohydrates composition and enzymatic saccharification.

The effects of Acremonium cellulase and L. plantarum A1 with ferulic acid esterase activity on corn stalk silage fermentation characteristics, carbohydrate composition and enzymatic saccharification were studied at 25 and 40 °C, respectively. Corn stalk was ensiled without additive (C), Acremonium cellulase (AC), L. plantarum A1 (Lp) and AC + Lp for 60 days. Pretreatment with Lp or AC + Lp promoted the better silage fermentation and the degradation of lignocellulose as indicated by high lactic acid and low pH and lignocellulose content compared to control silages at 25 °C. AC + Lp performed better in reducing lignocellulose and DM loss. In addition, Lp alone enhanced enzymatic saccharification of corn stalk silage. However, the influence of L. plantarum A1 on corn stalk silage was not obvious at 40 °C. Corn stalk ensiled with combined additive is a suitable pretreatment method for subsequent biofuel production at 25 °C, but addition of Acremonium cellulase alone at 40 °C may be a promising method.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app