Add like
Add dislike
Add to saved papers

COD/sulfate ratio does not affect the methane yield and microbial diversity in anaerobic digesters.

Water Research 2019 March 5
Anaerobic digestion of organic matter is the major route of biomethane production. However, in the presence of sulfate, sulfate-reducing bacteria (SRB) typically outcompete methanogens, which may reduce or even preclude methane production from sulfate-containing wastewaters. Although sulfate-reduction and methanogenesis can occur simultaneously, our limited understanding of the microbiology of anaerobic digesters treating sulfate-containing wastewaters constrains improvements in the production of methane from these systems. This study tested the effects of carbon sources and chemical oxygen demand-to-sulfate ratio (COD/SO4 2- ) on the diversity and interactions of SRB and methanogens in an anaerobic digester treating a high-sulfate waste stream. Overall, the data showed that sulfate removal and methane generation occurred in varying efficiencies and the carbon source had limited effect on the methane yield. Importantly, the results demonstrated that methanogenic and SRB diversities were only affected by the carbon source and not by the COD/SO4 2- ratio.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app