Add like
Add dislike
Add to saved papers

Quantitative proteomics combine with affinity MS revealed the molecular mechanism of ginsenoside anti-tumor effects.

Ginsenosides have previously been demonstrated to effectively inhibit cancer cell growth and survival in both animal models and cell lines. However, the specific ginsenoside component that is the active ingredient for cancer treatment through interaction with a target protein remains unknown. By an integrated quantitative proteomics approach via affinity mass spectrum(MS) technology, we deciphered the core structure of the ginsenoside active ingredient derived from crude extracts of ginsenosides and progressed toward identifying the target protein that mediates its anti-cancer activity. The Tandem Mass Tag (TMT) labeling quantitative proteomics technique acquired 55620 MS/MS spectra that identified 5499 proteins and 3045 modified proteins. Of these identified proteins, 224 differentially expressed proteins and modified proteins were significantly altered in non-small cell lung cancer cell lines. Bioinformatics tools for comprehensive analysis revealed that the Ras protein played a general regulatory role in many functional pathways and was probably the direct target protein of a compound in ginsenosides. Then, affinity MS screening based on the Ras protein identified 20(s)-protopanaxadiol, 20(s)-Ginsenoside Rh2 and 20(s)-Ginsenoside Rg3 were affinity with Ras protein under different conditions. In particularly, 20(s)-protopanaxadiol which derivatives the reported antitumor compounds 20(s)-Ginsenoside Rh2 and 20(s)-Ginsenoside Rg3 that have a higher affinity for Ras via a low KD of 1.22 μM and the mutation sites of G12 and G60 was demonstrated play a core roles in those interaction. Moreover, the molecular mechanism and bioactivity assessment results confirmed the identity of the chemical ligand that was directly acting on the GTP binding pocket of Ras and shown to be effective in cancer cell bioactivity profiles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app