Add like
Add dislike
Add to saved papers

Morphological, transcriptional, and metabolic analyses of osmotic-adapted mechanisms of the halophilic Aspergillus montevidensis ZYD4 under hypersaline conditions.

Halophilic fungi in hypersaline habitats require multiple cellular responses for high-salinity adaptation. However, the exact mechanisms behind these adaptation processes remain to be slightly known. The current study is aimed at elucidating the morphological, transcriptomic, and metabolomic changes of the halophilic fungus Aspergillus montevidensis ZYD4 under hypersaline conditions. Under these conditions, the fungus promoted conidia formation and suppressed cleistothecium development. Furthermore, the fungus differentially expressed genes (P < 0.0001) that controlled ion transport, amino acid transport and metabolism, soluble sugar accumulation, fatty acid β-oxidation, saturated fatty acid synthesis, electron transfer, and oxidative stress tolerance. Additionally, the hypersalinized mycelia widely accumulated metabolites, including amino acids, soluble sugars, saturated fatty acids, and other carbon- and nitrogen-containing compounds. The addition of metabolites-such as neohesperidin, biuret, aspartic acid, alanine, proline, and ornithine-significantly promoted the growth (P ≤ 0.05) and the morphological adaptations of A. montevidensis ZYD4 grown in hypersaline environments. Our study demonstrated that morphological shifts, ion equilibrium, carbon and nitrogen metabolism for solute accumulation, and energy production are vital to halophilic fungi so that they can build tolerance to high-salinity environments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app