Add like
Add dislike
Add to saved papers

Isolation and expression of acetolactate synthase genes that have a rare mutation in shepherd's purse (Capsella bursa-pastoris (L.) Medik.).

Acetolactate synthase (ALS) inhibitor-resistant biotypes are the fastest growing class of herbicide-resistant weeds. Shepherd's purse (Capsella bursa-pastoris (L.) Medik.), a tetraploid species and one of the most troublesome weeds in wheat production, has evolved ALS inhibitor resistance. To confirm and characterize the resistance of shepherd's purse populations to ALS-inhibiting herbicides, whole-plant bioassays were conducted. To investigate the molecular basis of resistance in shepherd's purse, the ALS gene was sequenced and compared between susceptible (S) and resistant (R) biotypes. Two partial intronless ALS genes (ALS-1 and ALS-2) were identified, and two heterozygous mutations (CCT to TCT in ALS-1 and CCT to CAT in ALS-2) at position 197 (Pro197Ser and Pro197His) providing resistance were simultaneously found in a single plant in a resistant population. Our results confirmed that the resistant shepherd's purse population showed high-level resistance to tribenuron-methyl (RI = 59.8), pyroxsulam (RI = 38.7) and flucarbazone-Na (RI = 88.0). Quantitative reverse transcription-polymerase chain reaction (RT-qPCR) results suggested that the difference in ALS gene expression was small between S and R populations, which may be insufficient to cause herbicide resistance, and according to the results of in vitro ALS activity, insensitivity of ALS may be the main mechanism of high resistance to tribenuron-methyl in resistant populations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app