Add like
Add dislike
Add to saved papers

Canal neuromasts enhance foraging in zebrafish (Danio rerio).

Aquatic animals commonly sense flow using receptors that extend from the body's surface. The lateral line of teleost fishes is unique among these systems because it additionally possesses receptors, the canal neuromasts (CNs), that are recessed within a channel. The lateral line has inspired the development of engineered sensors and concepts in the analysis of flow fields for submersible navigation. 
 The biophysics of CNs are known to be different from the superficial neuromasts (SNs) and thereby offer a distinct submodality. However, it is generally unclear whether CNs play a distinct role in behavior. We therefore tested whether CNs enhance foraging in the dark by zebrafish (Danio rerio), a behavior that we elicited with a vibrating rod. We found that juvenile fish, which have only SNs, bite at this rod at about one-third the rate and from as little as one-third the distance of adults for a high-frequency stimulus (50 < f < 100 Hz). We used novel techniques for manipulating the lateral line in adults to find found that CNs offered only a modest benefit at a lower frequency (20 Hz) and that foraging was mediated entirely by cranial neuromasts. Consistent with our behavioral results, biophysical models predicted CNs to be more than an order of magnitude more sensitive than SNs at high frequencies. This enhancement helps to overcome the rapid spatial decay in high-frequency components in the flow around the stimulus. These findings contrast what has been previously established for fishes that are ten-times the length of zebrafish, which use trunk CNs to localize prey. Therefore, CNs generally enhance foraging, but in a manner that varies with the size of the fish and its prey. These results have the potential to inform our understanding of flow sensing in aquatic animals and engineered systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app