Add like
Add dislike
Add to saved papers

Deep-learning based multiclass retinal fluid segmentation and detection in optical coherence tomography images using a fully convolutional neural network.

As a non-invasive imaging modality, optical coherence tomography (OCT) can provide micrometer-resolution 3D images of retinal structures. These images can help reveal disease-related alterations below the surface of the retina, such as the presence of edema, or accumulation of fluid which can distort vision, and are an indication of disruptions in the vasculature of the retina. In this paper, a new framework is proposed for multiclass fluid segmentation and detection in the retinal OCT images. Based on the intensity of OCT images and retinal layer segmentations provided by a graph-cut algorithm, a fully convolutional neural network was trained to recognize and label the fluid pixels. Random forest classification was performed on the segmented fluid regions to detect and reject the falsely labeled fluid regions. The proposed framework won the first place in the MICCAI RETOUCH challenge in 2017 on both the segmentation performance (mean Dice: 0.7667) and the detection performance (mean AUC: 1.00) tasks.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app