Add like
Add dislike
Add to saved papers

Development of a crystal collimation system for high-resolution ultra-small-angle X-ray scattering applications.

Crystal collimation offers a viable alternative to the commonly used pinhole collimation in small-angle X-ray scattering (SAXS) for specific applications requiring highest angular resolution. This scheme is not affected by the parasitic scattering and diffraction-limited beam broadening. The Darwin width of the rocking curve of the crystals mainly defines the ultimate beam divergence. For this purpose, a dispersive Si-111 crystal collimation set-up based on two well conditioned pseudo channel-cut crystals (pairs of well polished, independent parallel crystals) using a higher-order reflection (Si-333) has been developed. The gain in resolution is obtained at the expense of flux. The system has been installed at the TRUSAXS beamline ID02 (ESRF) for reducing the horizontal beam divergence in high-resolution mesurements. The precise mechanics of the system allows reproducible alignment of the Bragg condition. The high resolution achieved at a sample-detector distance of 31 m is demonstrated by ultra-small-angle X-ray scattering measurements on a model system consisting of micrometre-sized polystyrene latex particles with low polydispersity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app