JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Novel insights into the clinical and molecular spectrum of congenital disorders of autophagy.

Autophagy is a fundamental and conserved catabolic pathway that mediates the degradation of macromolecules and organelles in lysosomes. Autophagy is particularly important to postmitotic and metabolically active cells such as neurons. The complex architecture of neurons and their long axons pose additional challenges for efficient recycling of cargo. Not surprisingly autophagy is required for normal central nervous system development and function. Several single-gene disorders of the autophagy pathway have been discovered in recent years giving rise to a novel group of inborn errors of metabolism referred to as congenital disorders of autophagy. While these disorders are heterogeneous, they share several clinical and molecular characteristics including a prominent and progressive involvement of the central nervous system leading to brain malformations, developmental delay, intellectual disability, epilepsy, movement disorders, and cognitive decline. On brain magnetic resonance imaging a predominant involvement of the corpus callosum, the corticospinal tracts and the cerebellum are noted. A storage disease phenotype is present in some diseases, underscoring both clinical and molecular overlaps to lysosomal storage diseases. This review provides an update on the clinical, imaging, and genetic spectrum of congenital disorders of autophagy and highlights the importance of this pathway for neurometabolism and childhood-onset neurological diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app