Add like
Add dislike
Add to saved papers

A New Method for Modulation, Control and Power Boosting in Microbial Fuel Cells.

Microbial fuel cells (MFCs) are energy transducers, which through the metabolic reactions of facultative anaerobic microorganisms, transform the energy in organic matter directly into electricity. Extrinsic parameters such as hydraulic retention time, fuel quality (type and concentration) and physicochemical environment of electrodes and biofilms (e.g., temperature, pH, salinity, and redox), can all influence system efficiency. This work proposes that MFCs can be "fine-tuned" by adjustment of any of the physicochemical conditions including redox potential; in this context, an entirely novel method was investigated as a practical means of tuning, modulating and monitoring the redox potential within the electrode chambers. The method uses additional electrodes - known as 3rd and 4th -pins for anode and cathode chambers, respectively - which can be used in individual units, modules, cascades or stacks, for optimising the production of a large variety of chemicals, as well as biomass, water and power. The results have shown that the power output modulation resulted in an up to 79% and 33% increase, when connected via 3rd and 4th pins, respectively. Apart from power improvement, this study also demonstrated a method of open circuit potential (OCP) sensing, by using the same additional electrodes to both monitor and control the MFC signal in real time.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app