Add like
Add dislike
Add to saved papers

Atmospheric and room temperature plasma (ARTP) mutagenesis enables xylitol over-production with yeast Candida tropicalis.

Xylitol is a sugar alcohol that is used as a sweetener in food and confections. Industrially, xylitol is manufactured by chemical hydrogenation of D-xylose, which requires expensive separation and purification steps as well as high pressure and temperature. The microbial production of xylitol has been examined as an alternative to the chemical process. In this study, a xylitol over-producing strain is breeded by mutagenesis of a newly isolated yeast Candida tropicalis with a new mutation breeding system named atmospheric and room temperature plasma. The highest yield strain T31 was screened among more than 200 mutants with a xylitol yield of 0.61 g/g, which represents a yield increase of 22%. Furthermore, a two-stage dissolved oxygen supply strategy was used in a fermentation process resulting the maximum xylitol yield 0.79 g/g, which makes it a promising candidate for xylitol production. Further biochemical analysis indicating the relative gene expression and the enzyme activity of xylose reductase were higher in mutants than those in the original strain, which partly explained the high yield of xylitol. Thus, this study provides a new strategy to breed the over-producing strains for the xylitol industry.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app