Add like
Add dislike
Add to saved papers

CXCL12-regulated miR-370-3p functions as a tumor suppressor gene by targeting HMGA2 in nonfunctional pituitary adenomas.

Silencing of noncoding genes within the imprinted DLK1-MEG3 locus is exclusive to human nonfunctional pituitary adenomas (NFPAs), but the exact mechanism is still unclear. This study was designed to demonstrate the impact of CXCL12 on the expression of miRNAs within this locus and phenotypic alterations of NFPAs. Human NFPA samples were collected for screening differentially expressed miRNAs by CXCL12. Target mRNAs of the miRNAs were predicted and verified in vitro. Tumor phenotypic alterations were also tested. Another 51 NFPA samples were enrolled to examine the correlation and clinical features. The expression of miR-370 was decreased by CXCL12 treatment in NFPAs. miR-370-3p was predicted and verified to target HMGA2 as a tumor suppressor gene. Overexpression of HMGA2 inhibited its antitumor function. miR-370-3p was downregulated and HMGA2 was upregulated significantly in High grade NFPAs. In conclusion, the CXCL12/miR-370-3p/HMGA2 signaling pathway is involved in tumor growth and invasiveness of NFPAs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app