Journal Article
Review
Add like
Add dislike
Add to saved papers

An overview of electrospun membranes loaded with bioactive molecules for improving the wound healing process.

Nowadays, despite the intensive research performed in the area of skin tissue engineering, the treatment of skin lesions remains a big challenge for healthcare professionals. In fact, none of the wound dressings currently used in the clinic is capable of re-establishing all the native features of skin. An ideal wound dressing must confer protection to the wound from external microorganisms, chemical, and physical aggressions, as well as promote the healing process by stimulating the cell adhesion, differentiation, and proliferation. In recent years different types of wound dressings (such as films, hydrocolloids, hydrogels, micro/nano fibers) have been developed. Among them, electrospun nanofibrous membranes due to their intrinsic properties like high surface area-to-volume ratio, porosity and structural similarity with the skin extracellular matrix have been regarded as highly promising for wound dressings applications. Additionally, the nanofibers available in these membranes can act as drug delivery systems, which prompted the incorporation of biomolecules within their structure to prevent skin infections as well as improve the healing process. In this review, examples of different bioactive molecules that have been loaded on polymeric nanofibers are presented, highlighting the antibacterial biomolecules (e.g. antibiotics, silver nanoparticles and natural extracts-derived products) and the molecules capable of enhancing the healing process (e.g. growth factors, vitamins, and anti-inflammatory molecules).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app