Add like
Add dislike
Add to saved papers

High-velocity non-attenuated acoustic waves in LiTaO 3 /quartz layered substrates for high frequency resonators.

Ultrasonics 2019 March 3
Multilayered substrates for Surface Acoustic Wave (SAW) devices are able to combine SAW characteristics that cannot coexist in a single crystal substrate and, thus, meet the strong requirements of the new class of SAW devices developed for the next generations of communication systems. Recently, high performance resonators arranged on LiTaO3 /quartz bonded wafers and utilizing shear horizontally polarized acoustic waves were reported. Leaky SAWs with quasi-longitudinal polarization propagate faster and can facilitate fabrication of high frequency SAW devices but generally leak strongly into the substrate. This paper describes how the LiTaO3 /quartz structure can be optimized to allow longitudinal SAWs to propagate without attenuation. Due to the symmetry consideration, which is supplemented by a rigorous numerical simulation of the admittance functions of SAW resonators and an accurate extraction of the propagation losses, the found optimal LiTaO3 and quartz orientations with the optimized LiTaO3 thickness ensure the propagation of acoustic waves with a velocity exceeding 5400 m/s and an electromechanical coupling of 6.8% in resonators with Q factors up to 10,000. The optimal LT/quartz structures with plate thicknesses varying between 0.32 and 0.68 wavelengths can be employed in SAW resonators operating at high frequencies, up to 5 GHz. The existence of numerous orientations in quartz supporting the propagation of non-attenuated longitudinal SAWs is explained based on the concept of exceptional bulk waves, which is a part of SAW theory.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app