Add like
Add dislike
Add to saved papers

Pretreatment of kenaf (Hibiscus cannabinus L.) biomass feedstock for polyhydroxybutyrate (PHB) production and characterization.

Kenaf biomass (KB) was employed as feedstock for the synthesis of polyhydroxybutyrate (PHB) using Ralstonia eutropha to replace conventional petroleum-derived polymers. Various pretreatments followed by enzymatic saccharification were applied to release monomeric sugars from KB for PHB production. The effects of increasing concentration of Na2 CO3  + Na2 SO3 (NaC + NaS) pretreated KB hydrolysates (20-40 g/L) on PHB production were investigated. NaC + NaS pretreated KB hydrolysates (30 g/L) exhibited maximum 70.0% PHA accumulation, with PHB titers of 10.10 g/L and PHB yields of about 0.488 g/g of reducing sugar produced within 36 h of fermentation. PHA accumulation, PHB yield and R. eutropha growth performance using KB hydrolysates were found to be comparable with those of synthetic sugar mixture. Characterization of the produced PHB in terms of crystalline structure, and thermal properties was done using various analytical techniques and results coincide with standard PHB. Thus, green liquor pretreated KB hydrolysates deliver a promising and economically feasible carbon substrate for PHB production.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app