Add like
Add dislike
Add to saved papers

Impacts of applied voltage on EMBR treating phenol wastewater: Performance and membrane antifouling mechanism.

Bioresource Technology 2019 Februrary 26
The impacts of electric field applied in MBR (EMBR) for treating phenol wastewater and membrane antifouling mechanism were systematically investigated. Phenol degradation rate increased from 0 to 0.8 V/cm, while decreased from 0.8 to 1.75 V/cm, which significantly positively correlated with key enzymes. The membrane fouling rate of EMBR gradually slowed down with voltage increasing. The applied voltage significantly reduced EPS contents, and altered its compositions probably due to H2 O2 oxidation, which were the major reasons for membrane antifouling. Red shift in UV-Vis spectrum at 210-220 nm and reduction of fluorescence emission intensity from tryptophan protein-like substances in EPS reduced the energy requirement for electrons transition of electron-donating groups with voltage increasing. Positively charged bond NH2 decreased and negatively charged bond COO increased in EPS with voltage increasing, which led to the increase of absolute value of zeta potential and then remarkable augmented of electrostatic repulsion between sludge and membrane.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app