Add like
Add dislike
Add to saved papers

Real-time detection of potable-reclaimed water pipe cross-connection events by conventional water quality sensors using machine learning methods.

Risk of cross-connection is becoming higher due to greater construction of potable-reclaimed water dual distribution systems. Cross-connection events can result in serious health concerns and reduce public confidence in reclaimed water. Thus, reliable, cost-effective and real-time online detection methods for early warning are required. The current study carried out pilot-scale experiments to simulate potable-reclaimed water pipe cross-connection events for different mixing ratios (from 30% to 1%) using machine learning methods based on multiple conventional water quality parameters. The parameters included residual chlorine, pH, turbidity, temperature, conductivity, oxidation-reduction potential and chemical oxygen demand. The results showed that correlated variation occurred among water quality parameters at the time of the cross-connection event. A single parameter-based method can be effective at high mixing ratios, but not at low mixing ratios. The direct supporting vector machine (SVM)-based method managed to overcome this drawback, but coped poorly with abnormal readings of water parameter sensors. In that respect, a Pearson correlation coefficient (PCC)-SVM-based method was developed. It provided not only high detection performance under normal conditions, but also remained reliable when abnormal readings occurred. The detection accuracy and true positive rate of this method was still over 88%, and the false positive rate was below 12%, given a sudden variation of an individual water quality parameter. The receiver operating characteristic curves further confirmed the promising practical applicability of this PCC-SVM-based method for early detection of cross-connection events.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app