Add like
Add dislike
Add to saved papers

Localized surface plasmon resonance (LSPR) biosensor based on thermally annealed silver nanostructures with on-chip blood-plasma separation for the detection of dengue non-structural protein NS1 antigen.

Biosensors & Bioelectronics 2019 Februrary 22
Early diagnosis of dengue biomarkers by employing a technology that is less labor- and time-intensive and offers higher sensitivity and lower limits of detection would find great significance in the developing world. Here, we report the development of a biosensor that exploits the localized surface plasmon resonance (LSPR) effect of silver nanostructures, created via thermal annealing of thin metal film, to detect dengue NS1 antigen, which appears as early as the onset of infection. The biosensor integrates membrane-based blood-plasma separation to develop lab-on-chip device that facilitates rapid diagnosis (within 30 min) of dengue NS1 antigen from a small volume (10 µL) of whole blood. The refractive index (RI) sensitivity of the LSPR biosensor was verified by using aqueous glycerol (0-100 wt%) which showed that it is sufficiently sensitive to detect 10-3 change in RI, which is comparable to that observed with protein-protein interaction. The RI sensitivity was utilized to demonstrate protein binding by using bovine serum albumin and detection of antibody-antigen immune reaction by binding human chorionic gonadotropin antigen to immunoglobulin antibody immobilized in our LSPR biosensor. Next, we demonstrated the detection of NS1 in plasma obtained via centrifugation and in plasma separated on-chip. From 10 µL of whole blood spiked with NS1 antigen, our biosensor reliably detects 0.06 µg/mL of NS1, which lies within the clinical limit observed during the first seven days of infection, with a sensitivity of 9 nm/(µg/mL). These results confirm that the proposed LSPR biosensor can potentially be used in point-of-care dengue diagnostics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app