Add like
Add dislike
Add to saved papers

Observation of a dynamical crossover in the shear relaxation processes in supercooled selenium near the glass transition.

Shear relaxation in supercooled selenium liquid near its glass transition over the viscosity range of 106 Pa s-1012 Pa s is studied using oscillatory parallel plate rheometry. The results demonstrate the presence of a slow, Debye-like relaxation process and a fast, cooperative relaxation process that are attributed, respectively, to the Se-Se bond scission/renewal dynamics and the segmental motion of selenium chains. The slow process displays a nearly-Arrhenius temperature dependence, while the fast process is strongly non-Arrhenius, and their combined contribution to viscosity is estimated using the Maxwell relation. The slow process is found to be coupled to viscous flow over the entire viscosity range. In contrast, the fast process becomes a major contributor to viscosity, and hence, to fragility only near Tg . This dynamical crossover is likely a fundamental characteristic of fragile liquids that represents a temperature dependent evolution of their free energy landscape. The fragility of supercooled selenium liquid appears to be remarkably closely linked to the temperature dependence of the shear modulus of the slow process, thus validating the prediction of the elastic shoving model.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app