Add like
Add dislike
Add to saved papers

An unusual disordered alveolar bone material in the upper furcation region of minipig mandibles: a 3D hierarchical structural study.

Teeth are subjected to compressive loads during mastication. Under small loads the soft tissue periodontal ligament (PDL) deforms most. However when the loads increase and the PDL is highly compressed, the tooth and the alveolar bone supporting the tooth, begin to deform. Here we report on the structure of this alveolar bone in the upper furcation region of the first molars of mature minipigs. Using light microscopy and scanning electron microscopy (SEM) of bone cross-sections, we show that this bone is hypermineralized, containing abundant small pores around 1-5 μm in diameter, lacunae around 10-20 μm as well as larger spaces. This bone does not possess the typical lamellar motif or other repeating structures normally found in cortical or trabecular mammalian bone. We also use high resolution focused ion beam scanning electron microscopy (FIB-SEM) in the serial surface mode to image the 3D organization of the demineralized bone matrix. We show that the upper furcation bone matrix has a disordered isotropic structure composed mainly of individual collagen fibrils with no preferred orientation, as well as highly staining material that is probably proteoglycans. Much larger aligned arrays of collagen fibers - presumably Sharpey's fibers - are embedded in this material. This unusual furcation bone material is similar to the disordered material found in human lamellar bone. In the upper furcation region this disordered bone comprises almost all the volume excluding Sharpey's fibers. We surmise that this most unusual bone type functions to resist the repeating compressive loads incurred by molars during mastication.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app