Add like
Add dislike
Add to saved papers

Iridium-Based Cubic Nanocages with 1.1-nm-Thick-Walls: A Highly Efficient and Durable Electrocatalyst for Water Oxidation in an Acidic Medium.

Angewandte Chemie 2019 March 9
We report a highly active and durable water oxidation electrocatalyst based on cubic nanocages with a composition of Ir44Pd10, together with well-defined {100} facets and porous walls of roughly 1.1 nm in thickness. Such nanocages substantially outperform all the water oxidation electrocatalysts reported in literature, with an overpotential of only 226 mV for reaching 10 mA•cm-2geo at a loading of Ir as low as 12.5 μgIr•cm-2 on the electrode in acidic media. When benchmarked against a commercial Ir/C electrocatalyst at 250 mV of overpotential, such a nanocage-based catalyst not only shows enhancements (18.1- and 26.2-fold, respectively) in terms of mass (1.99 A•mg-1Ir) and specific (3.93 mA•cm-2Ir) activities, but also greatly enhanced durability. The enhancements can be attributed to a combination of multiple merits, including a high utilization efficiency of Ir atoms and an open structure beneficial to the electrochemical oxidation of Ir to the active form of IrOx.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app