Add like
Add dislike
Add to saved papers

Decellularization as a method to reduce calcification in bovine pericardium bioprosthetic valves.

OBJECTIVES: Decellularization is an alternative method for processing biological tissues with decreased antigenicity and resistance to calcification. The aim of this study was to characterize the properties of decellularized (dCell) bovine pericardium fixed with 0.1% glutaraldehyde (GA) and to evaluate outcomes of bioprosthetic valves constructed with this tissue when implanted in the mitral position of juvenile sheep.

METHODS: Bioprosthetic mitral valves were constructed with fresh bovine pericardium fixed in 0.5% GA (control group) or dCell bovine pericardium fixed in 0.1% GA (study group). Before implantation, samples were submitted to histological (haematoxylin-eosin, Movat and 4',6-diamidino-2-phenylindole), biochemical (residual deoxyribonucleic acid and α-gal epitopes) and biomechanical characterization. Valves were implanted (n = 8 in each group) as a mitral valve replacement for 180 days in sheep and explants were re-evaluated histologically and for calcification with radiological studies and calcium content determination.

RESULTS: Unimplanted dCell pericardia exhibited a well-preserved extracellular matrix with absence of cells, a 77% reduction in deoxyribonucleic acid levels and with no detectable α-gal epitopes. When compared to controls, they had lower ultimate tensile strength (7.3 ± 5.4 vs 10.2 ± 3.0 mPa, P = 0.04) and greater percentage elongation in the longitudinal direction (29 ± 6.5% vs 23.8 ± 5.1%, P = 0.02). After 180 days in mitral position, dCell valves showed pliable leaflets without macroscopic signs of calcification. Histologically, dCell leaflets had intact collagen fibres, better tissue remodelling and a significant 89% reduction in calcium content.

CONCLUSIONS: This study demonstrates that bioprosthetic valves constructed with dCell bovine pericardium fixed in low GA concentration were resistant to calcification and may thereby improve long-term durability of the tissue.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app