Add like
Add dislike
Add to saved papers

Overexpression of SUMO1 located predominately to euchromatin of dividing cells affects reproductive development in maize.

Post-translational modification of proteins by small ubiquitin-like modifier (SUMO) plays essential roles in a large variety of cellular and developmental processes. While SUMO conjugation to target proteins has been reported in numerous studies in animals and human, and partly also in the model plant Arabidopsis, little is known about the specific roles of SUMO in crop plants. Here, we report about the maize SUMO family and show that the highly conserved core isoform SUMO1 predominately locates to the nucleus where it marks euchromatin rather than heterochromatin. Moreover, SUMO1 is especially present in nuclei of small dividing cells. Strong overexpression of SUMO1 caused a severe dwarf phenotype and abnormalities in floral organ structures. Defects in anther development and female gametogenesis occurred similar to null-mutant phenotypes reported in Arabidopsis. Taken together, these studies imply that precise and fine-tuned conjugation of the highly conserved plant SUMO1 isoform to target proteins is required for vegetative and reproductive development. Mis-regulation by overexpression or knock-out is deleterious, strongly affecting fertility in both dicots and monocots, including the crop plant maize.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app