Add like
Add dislike
Add to saved papers

Cooperativity during Melting and Molecular Exchange in Micelles with Crystalline Cores.

Physical Review Letters 2019 Februrary 23
Molecular exchange processes are important equilibration and transport mechanisms in both synthetic and biological self-assembled systems such as micelles, vesicles, and membranes. Still, these processes are not entirely understood, in particular the effect of crystallinity and the interplay between cooperative melting processes and chain exchange. Here we focus on a set of simple polymer micelles formed by binary mixtures of poly(ethylene oxide)-mono-n-alkyl-ethers (C_{n}-PEO5) which allows the melting point to be tuned over a wide range. We show that the melting transition is cooperative in the confined 4-5 nm micellar core, whereas the exchange process is widely decoupled and unimeric in nature. As confirmed by differential scanning calorimetry, the total activation energy for ejecting a molecule out of the micellar core below the melting point is the sum of the enthalpy of fusion and the corresponding activation energy in the melt state. This suggests that a "local, single-chain melting process" preludes the molecular diffusion out of the micelle during chain exchange.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app