Add like
Add dislike
Add to saved papers

Eigenstate Thermalization, Random Matrix Theory, and Behemoths.

Physical Review Letters 2019 Februrary 23
The eigenstate thermalization hypothesis (ETH) is one of the cornerstones of contemporary quantum statistical mechanics. The extent to which ETH holds for nonlocal operators is an open question that we partially address in this Letter. We report on the construction of highly nonlocal operators, behemoths, that are building blocks for various kinds of local and nonlocal operators. The behemoths have a singular distribution and width w∼D^{-1} (D being the Hilbert space dimension). From there, one may construct local operators with the ordinary Gaussian distribution and w∼D^{-1/2} in agreement with ETH. Extrapolation to even larger widths predicts sub-ETH behavior of typical nonlocal operators with w∼D^{-δ}, 0<δ<1/2. This operator construction is based on a deep analogy with random matrix theory and shows striking agreement with numerical simulations of nonintegrable many-body systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app