Add like
Add dislike
Add to saved papers

A new hypothesis to investigate bioequivalence of pharmaceutical inhalation products.

BACKGROUND: This short communication reports a new hypothesis regarding bioequivalence of inhalation products which can potentially provide a reliable means to compare pharmaceutical aerosol formulations and inhalers.

METHODS: Available methods regarding the bioequivalence studies, inhaled drugs and advantages of exhaled breath condensate (EBC) samples were reviewed to develop this hypothesis.

RESULTS: It is postulated that two inhalation products providing the same drug concentrations in airway lining fluid (ALF) could be considered bioequivalent. The use of EBC tests which reflect ALF composition can be recommended as an alternative to current testing methods for consideration of bioequivalence.

CONCLUSION: The methods based on EBC analysis can potentially be applied to bioequivalence study of inhalation products and could reflect drug concentration in ALF. However, experimental studies would be necessary to support or refute this hypothesis on the novel application of EBC to bioequivalence in the future. Graphical abstract In vitro (cascade impactor) and In vivo (EBC concentration) corrolation for inhaled drugs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app