Add like
Add dislike
Add to saved papers

Drug repositioning in epilepsy reveals novel antiseizure candidates.

Objective: Epilepsy treatment falls short in ~30% of cases. A better understanding of epilepsy pathophysiology can guide rational drug development in this difficult to treat condition. We tested a low-cost, drug-repositioning strategy to identify candidate epilepsy drugs that are already FDA-approved and might be immediately tested in epilepsy patients who require new therapies.

Methods: Biopsies of spiking and nonspiking hippocampal brain tissue from six patients with unilateral mesial temporal lobe epilepsy were analyzed by RNA-Seq. These profiles were correlated with transcriptomes from cell lines treated with FDA-approved drugs, identifying compounds which were tested for therapeutic efficacy in a zebrafish seizure assay.

Results: In spiking versus nonspiking biopsies, RNA-Seq identified 689 differentially expressed genes, 148 of which were previously cited in articles mentioning seizures or epilepsy. Differentially expressed genes were highly enriched for protein-protein interactions and formed three clusters with associated GO-terms including myelination, protein ubiquitination, and neuronal migration. Among the 184 compounds, a zebrafish seizure model tested the therapeutic efficacy of doxycycline, metformin, nifedipine, and pyrantel tartrate, with metformin, nifedipine, and pyrantel tartrate all showing efficacy.

Interpretation: This proof-of-principle analysis suggests our powerful, rapid, cost-effective approach can likely be applied to other hard-to-treat diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app