Add like
Add dislike
Add to saved papers

Slippery for scaling resistance in membrane distillation: A novel porous micropillared superhydrophobic surface.

Water Research 2019 Februrary 2
Scaling in membrane distillation (MD) is a key issue in desalination of concentrated saline water, where the interface property between the membrane and the feed become critical. In this paper, a slippery mechanism was explored as an innovative concept to understand the scaling behavior in membrane distillation for a soluble salt, NaCl. The investigation was based on a novel design of a superhydrophobic polyvinylidene fluoride (PVDF) membrane with micro-pillar arrays (MP-PVDF) using a micromolding phase separation (μPS) method. The membrane showed a contact angle of 166.0 ± 2.3° and the sliding angle of 15.8 ± 3.3°. After CF4 plasma treatment, the resultant membrane (CF4 -MP-PVDF) showed a reduced sliding angle of 3.0°. In direct contact membrane distillation (DCMD), the CF4 -MP-PVDF membrane illustrated excellent anti-scaling in concentrating saturated NaCl feed. Characterization of the used membranes showed that aggregation of NaCl crystals occurred on the control PVDF and MP-PVDF membranes, but not on the CF4 -MP-PVDF membrane. To understand this phenomenon, a "slippery" theory was introduced and correlated the sliding angle to the slippery surface of CF4 -MP-PVDF and its anti-scaling property. This work proposed a well-defined physical and theoretical platform for investigating scaling problems in membrane distillation and beyond.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app