Add like
Add dislike
Add to saved papers

Development, validation and application of a novel HPLC-MS/MS method for the measurement of minocycline in human plasma and urine.

New treatments are urgently required to treat infections caused by multi-drug resistant Acinetobacter baumanni,. To address this need, a new formulation of Minocin®, (minocycline for injection) has been developed that allows for higher doses of minocycline to be administered. Phase 1 clinical trials were conducted in healthy volunteers to assess the safety and pharmacokinetics (PK) of this new formulation at higher doses. In order to generate PK data, novel, selective and simple HPLC-MS/MS based assays were developed and validated for the determination of minocycline (MC) in human plasma and urine. The respective working ranges were 0.05 to 30 mg/L and 0.1 to 30 mg/L. Removal of endogenous proteins with trichloroacetic acid was used as a simple means of extracting MC from the samples. An analogue, tetracycline was used as the internal standard (IS). Chromatographic separation, including that of MC from its 4-epimer (4-EMC), was achieved on a Waters XBridge BEH C18 column (50 x 4.6 mm ID, 5 μm) with gradient elution. The mobile phases comprised water containing 5 mM ammonium formate at a pH of 2.5, and methanol containing 5 mM ammonium formate. The internal standard (IS) was tetracycline, a structural analogue of minocycline. The methods were fully validated and met regulatory acceptance criteria for intra-run and inter-run accuracy and precision, carryover, dilution integrity and matrix effects. Mean extraction recoveries ranged between 64.3% and 84.6% for MC and 64.3% for the IS. There was no significant ion suppression or enhancement for MC or the IS. The validated assays were successfully applied to 1423 plasma and 689 urine samples from a Phase 1 clinical study. There was no evidence of instability, or significant interconversion between MC and 4-EMC, in stored clinical samples, spiked plasma and urine samples, or their extracts, under various test conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app