TNF-α derived from M2 tumor-associated macrophages promotes epithelial-mesenchymal transition and cancer stemness through the Wnt/β-catenin pathway in SMMC-7721 hepatocellular carcinoma cells
Yongxu Chen, Huihong Wen, Cheng Zhou, Qiao Su, Yongxin Lin, Yingjie Xie, Yajing Huang, Qixuan Qiu, Juze Lin, Xuhui Huang, Wei Tan, Cunyun Min, Changjun Wang
Experimental Cell Research 2019 March 4
30844387
M2-polarized tumor-associated macrophages (M2-TAMs) infiltrating the tumor microenvironment contribute to hepatocellular carcinoma (HCC) progression. It was reported that cancer cells undergoing EMT will acquire stemness characteristics. Here, the HCC SMMC-7721 cell line was co-cultured with M2-TAMs polarized from THP-1 cells in vitro. In in vivo studies, we used nude mice subcutaneous tumor model to test whether the growth of the tumor was affected by M2-TAMs. Subsequently, EMT, stemness and Wnt/β-catenin pathway related markers were detected in cells and subcutaneous tumor tissues. TNF-α was also assessed in both the co-culture system supernatants and in nude mice serum. We found that SMMC-7721 underwent EMT and acquired stemness after co-culture with M2-TAMs, and resulted in larger tumor size following subcutaneous injection of SMMC-7721 suspended in M2-TAMs supernatants compared with SMMC-7721 alone. Enzyme linked immunosorbent assay showed that TNF-α expression was elevated in supernatants of M2-TAMs and positively correlated with tumor size in the serum of nude mice. Furthermore, we found that the Wnt/β-catenin pathway was a downstream target of TNF-α and that the Wnt/β-catenin inhibitor ICG-001 partially reversed EMT and attenuated cancer stemness. Our results indicate that TNF-α derived from M2-TAMs promote EMT and cancer stemness cells via the Wnt/β-catenin pathway.
Full Text Links
Find Full Text Links for this Article
You are not logged in. Sign Up or Log In to join the discussion.