Add like
Add dislike
Add to saved papers

Induced pluripotent stem cell-derived melanocyte precursor cells undergoing differentiation into melanocytes.

Induced pluripotent stem cell (iPSC) technology offers a novel approach for conversion of human primary fibroblasts into melanocytes. During attempts to explore various protocols for differentiation of iPSCs into melanocytes, we found a distinct and self-renewing cell lineage that could differentiate into melanocytes, named as melanocyte precursor cells (MPCs). The MPCs exhibited a morphology distinctive from that of melanocytes, in lacking either the melanosomal structure or the melanocyte-specific marker genes MITF, TYR, and SOX10. In addition, gene expression studies in the MPCs showed high-level expression of WNT5A, ROR2, which are non-canonical WNT pathway markers, and its related receptor TGFβR2. In contrast, MPC differentiation into melanocytes was achieved by activating the canonical WNT pathway using the GSK3β inhibitor. Our data demonstrated the distinct characteristic of MPCs' ability to differentiate into melanocytes, and the underlying mechanism of interfacing between canonical WNT signaling pathway and non-canonical WNT signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app