Read by QxMD icon Read

Polyvinylchloride surface with enhanced cell/bacterial adhesion-resistant and antibacterial functions

Rashed Almouse, Xin Wen, Sungsoo Na, Gregory Anderson, Dong Xie
Journal of Biomaterials Applications 2019 March 6, : 885328219834680
This study reports synthesis and attachment of a novel antibacterial and hydrophilic polymer onto a polyvinylchloride surface via a simple and mild surface coating technique. The compound 3,4-dichloro-5-hydroxy-2(5H)-furanone was derivatized and copolymerized with N-vinylpyrrolidone. The copolymer was then covalently coated onto polyvinylchloride surface. 3T3 mouse fibroblast cells and bacterium Pseudomonas aeruginosa were used to evaluate surface adhesion and antibacterial activity. Results showed that the polymer-modified polyvinylchloride surface not only exhibited significantly decreased 3T3 fibroblast cell adhesion with a 64-84% reduction but also demonstrated significantly decreased P. aeruginosa adhesion with a 65-84% reduction, as compared to unmodified polyvinylchloride. Furthermore, the modified polyvinylchloride surfaces exhibited significant antibacterial functions by inhibiting P. aeruginosa growth with a 58-80% reduction and killing bacteria, as compared to unmodified polyvinylchloride. These results demonstrate that covalent polymer attachment conferred cell/bacterial adhesion-resistant and antibacterial properties to the polyvinylchloride surface.


You need to log in or sign up for an account to be able to comment.

No comments yet, be the first to post one!

Trending on Read

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"