Add like
Add dislike
Add to saved papers

Biofabrication of 3D cell-encapsulated tubular constructs using dynamic optical projection stereolithography.

It has been widely recognized that one of the critical limitations in biofabrication of functional tissues/organs is lack of vascular networks which provide tissues and organs with oxygen and nutrients. Biofabrication of 3D vascular-like constructs is a reasonable first step towards successful printing of functional tissues and organs. In this paper, a dynamic optical projection stereolithography system has been implemented to successfully fabricate 3D Y-shaped tubular constructs with living cells encapsulated. The effects of operating conditions on the cure depth of a single layer have been investigated, such as UV intensity, exposure time, and cell density. A phase diagram has been constructed to identify optimal operating conditions. Cell viability immediately after printing has been measured to be around 75%. Post-printing mechanical properties, swelling properties, and microstructures of the gelatin methacrylate hydrogels have been characterized. The resulting fabrication knowledge helps to effectively and efficiently print tissue-engineered vascular networks with complex geometries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app