Add like
Add dislike
Add to saved papers

Plyometric exercise improves jumping performance and skeletal muscle contractile properties in seniors.

OBJECTIVE: This study investigated the effects of an 8-week plyometric training (PT) session on countermovement jump (CMJ) height, take-off velocity, and Tensiomyography (TMG) derived contractile parameters in seniors.

METHODS: Twenty-three senior adults (age 66.7±5.2 years) were randomly divided into two groups: PLYO (n=11) and CTRL (n=12). Tensiomyography was measured in vastus lateralis (VL), biceps femoris (BF), tibialis anterior (TA), gastrocnemius medialis (GM), and lateralis (GL). Additionally, the electromechanical efficiency (EME) index was calculated in GM as a ratio between amplitudes of peak-to-peak M-wave and TMG (Dm) responses. Biochemical markers of muscle damage and inflammation were evaluated to provide indirect indices of exercise protocol safety.

RESULTS: The main effect of time (for take-off velocity p=.023; ɳ2 = .236) and group x time interactions (for CMJ, Tc (BF, GM), Dm (BF) and EME p<.05; ɳ2 = .136 - .236) were observed. Post hoc analysis showed a significant increase in CMJ height and take-off velocity, namely by 14.2% (p=.001) and 8.2% (p=.01) in PLYO, respectively. Contraction time (Tc) decreased in BF -5.7% (p=.001) and GM -9.6% (p=.001). Dm decreased only in BF -20.8% (p=.001), while the EME index of the GM improved by 22.9% (p=.002). There were no differences between groups or assessment time points for C-reactive protein (p=.122).

CONCLUSION: The present study clearly supports the application of supervised PT exercise in seniors, since explosive power, muscle contractility, and EME of the lower limbs were markedly improved after training.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app