Add like
Add dislike
Add to saved papers

The basis for reevaluating the reactivity of pyrite surfaces: spin states and crystal field d-orbital splitting energies of bulk, terrace, edge, and corner Fe(ii) ions.

Pyrite, one of the most important minerals to catalyze redox reactions in nature and a bulk low-spin Fe mineral, needs to provide high-spin Fe on surfaces to moderate spin-forbidden transitions. Here, the spin state of pyrite is investigated using density functional theory (DFT) calculations on cluster and periodic models. The energies of clusters FexS2x (where x = 4, 8, 16, and 32) were calculated as a function of total spin and different up/down spin configurations. The undercoordinated Fe on surfaces, edges, and corners were found to provide intermediate and high-spin Fe necessary for catalysis. Generally, the lower the crystal field splitting energy (CFSE), Δ, for a particular Fe atom, the higher is the spin density. Pyrite bulk (3D) and surfaces (2D) (+ water to mimic aqueous systems) were examined. The calculated bulk band gap (0.95 eV) is in excellent agreement with previous reports. For the surface, a conducting state is predicted. The calculated CFSE for bulk Fe(ii) in pyrite (∼2.2 eV) agrees with previous CFT results; due to surface states, this CFSE decreases to ∼1 eV on terraces. This study highlights the importance of accurately describing the spin state of pyrite.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app