Add like
Add dislike
Add to saved papers

Roles of poly (ADP-ribose) polymerase 1 activation and cleavage in induction of multi-oocyte ovarian follicles in the mouse by 3-nitropropionic acid.

3-nitropropionic acid (3-NPA) is known to be a mitochondrial toxin produced by plants and fungi, which may produce DNA damage in cells. However, studies of its reproductive toxicology are lacking. We know that poly(ADP-ribose) polymerase (PARP) plays an important role in a large variety of physiological processes and is involved in DNA repair pathways. The present study was therefore aimed at exploring the involvement of PARP-1 activation and cleavage after 3-NPA stimulation in female mice. We observed an increased number of atretic follicles and multi-oocyte follicles (MOFs) after treatment with 3-NPA and serum concentrations of 17β-oestradiol and progesterone were significantly reduced. Our results provide evidence that PARP-1 cleavage and activational signals are involved in pathological ovarian processes stimulated by 3-NPA. In addition, total superoxide dismutase, glutathione peroxidase and catalase activities were significantly increased, whereas succinate dehydrogenase was decreased in a dose-dependent manner. Results from our in vitro study similarly indicated that 3-NPA inhibited the proliferation of mouse granulosa cells and increased apoptosis in a dose-dependent manner. In summary, 3-NPA induces granulosa cell apoptosis, follicle atresia and MOFs in the ovaries of female mice and causes oxidative stress so as to disrupt endogenous hormonal systems, possibly acting through PARP-1 signalling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app