Add like
Add dislike
Add to saved papers

Hypotonicity differentially affects inflammatory marker production by nucleus pulposus tissue in simulated disc degeneration versus herniation.

Inflammatory cytokines play an important role in intervertebral disc degeneration. Although largely produced by immune cells, nucleus pulposus (NP) cells can also secrete them under various conditions, for example, under free swelling. Thus, tissue hypotonicity may be an inflammatory trigger for NP cells. The aim of this study was to investigate whether decreased tonicity under restricted swelling conditions (as occurring in early disc degeneration) could initiate an inflammatory cascade that mediates further degeneration. Healthy bovine NP tissue was balanced against different PEG concentrations (0-30%) to obtain various tissue tonicities. Samples were then placed in an artificial annulus (fixed volume) and were cultured for 3, 7, or 21 days, with free swelling NP as control. Tissue content (water, glycosaminoglycan, collagen) was analyzed, and both the tissue and medium were screened for tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), prostaglandin-E2 (PGE2 ), and nitric oxide (NO). A range of tonicities (isotonic to hypotonic) was present at day 3 in the PEG-treated samples. However, during culture, the tonicity range narrowed as GAGs leached from the tissue. TNF-α and IL-1β were below detection limits in all conditions, while mid- and downstream inflammatory cytokines were detected. This may suggest that the extracellular environment directly affects NP cells instead of inducing a classical inflammatory cascade. Furthermore, IL-8 increased in swelling restricted samples, while IL-6 and PGE2 were elevated in free swelling controls. These findings may suggest the involvement of different mechanisms in disc degeneration with intact AF compared to herniation, and encourage further investigation. © 2019 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app