Add like
Add dislike
Add to saved papers

miR-7977 inhibits the Hippo-YAP signaling pathway in bone marrow mesenchymal stromal cells.

We and others have demonstrated that various abnormalities of the bone marrow (BM) mesenchymal stromal cells (MSCs) such as aberrant cytokine expression, abnormal hedgehog signaling, and impaired miRNA biogenesis are observed in patients with acute myeloid leukemia (AML). However, underlying mechanisms to induce the dysfunction of BM MSCs have not yet been clarified. We previously showed that AML cells release abundant exosomal miR-7977, which, in turn, enters BM mesenchymal stromal cells (MSCs). However, the precise function of miR-7977 is not known. In this study, we performed transduction of a miR-7977 mimic into MSCs, compared transcriptomes between control-transduced (n = 3) and miR-7977-transduced MSCs (n = 3), and conducted pathway analysis. The array data revealed that the expression of 0.05% of genes was reduced 2-fold and the expression of 0.01% of genes was increased 2-fold. Interestingly, approximately half of these genes possessed a miR-7977 target site, while the other genes did not, suggesting that miR-7977 regulates the gene expression level directly and indirectly. Gene set enrichment analysis showed that the gene sets of Yes-associated protein 1 (YAP1) _up were significantly enriched (p<0.001, q<0.25), suggesting that miR-7977 modulates the Hippo-YAP signaling pathway. Visualization of pathway and network showed that miR-7977 significantly reduced the expression of Hippo core kinase, STK4. miR-7977 inactivated the Hippo-YAP signaling pathway as proven by GFP-tagged YAP nuclear trans localization and TEAD reporter assay. The miR-7977-transduced MSC cell line, HTS-5, showed elevated saturation density and enhanced entry into the cell cycle. These results suggest that miR-7977 is a critical factor that regulates the Hippo-YAP signaling pathway in BM-MSCs and may be involved in the upregulation of leukemia-supporting stroma growth.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app