Add like
Add dislike
Add to saved papers

A comparison of density-modulus relationships used in finite element modeling of the shoulder.

Subject- and site-specific modeling techniques greatly improve the accuracy of computational models derived from clinical-resolution quantitative computed tomography (QCT) data. The majority of shoulder finite element (FE) studies use density-modulus relationships developed for alternative anatomical locations. As such, the objectives of this study were to compare the six most commonly used density-modulus relationships in shoulder finite element (FE) studies. To achieve this, ninety-eight (98) virtual trabecular bone cores were extracted from uCT scans of scapulae from 14 cadaveric specimens (7 male; 7 female). Homogeneous tissue moduli of 20 GPa, and heterogeneous tissue moduli scaled by CT-intensity were considered. Micro finite element models (µ-FEMs) of each virtual core were compressively loaded to 0.5% apparent strain and apparent strain energy density (SEDapp ) was collected. Each uCT virtual core was then co-registered to clinical QCT images, QCT-FEMs created, and each of the 6 density-modulus relationships applied (6 × 98 = 588 QCT-FEMs). The loading and boundary conditions were replicated and SEDapp was collected and compared to µ-FEM SEDapp . When a homogeneous tissue modulus was considered in the µ-FEMs, SEDapp was best predicted in QCT-FEMs with the density-modulus relationship developed from pooled anatomical locations (QCT-FEM SEDapp  = 0.979µ-FEM SEDapp  + 0.0066, r2  = 0.933). A different density-modulus relationship best predicted SEDapp (QCT-FEM SEDapp  = 1.014µ-FEM SEDapp  + 0.0034, r2  = 0.935) when a heterogeneous tissue modulus was considered. This study compared density-modulus relationships used in shoulder FE studies using an independent computational methodology for comparing these relationships.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app