Add like
Add dislike
Add to saved papers

f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks.

Medical Image Analysis 2019 January 32
Obtaining expert labels in clinical imaging is difficult since exhaustive annotation is time-consuming. Furthermore, not all possibly relevant markers may be known and sufficiently well described a priori to even guide annotation. While supervised learning yields good results if expert labeled training data is available, the visual variability, and thus the vocabulary of findings, we can detect and exploit, is limited to the annotated lesions. Here, we present fast AnoGAN (f-AnoGAN), a generative adversarial network (GAN) based unsupervised learning approach capable of identifying anomalous images and image segments, that can serve as imaging biomarker candidates. We build a generative model of healthy training data, and propose and evaluate a fast mapping technique of new data to the GAN's latent space. The mapping is based on a trained encoder, and anomalies are detected via a combined anomaly score based on the building blocks of the trained model - comprising a discriminator feature residual error and an image reconstruction error. In the experiments on optical coherence tomography data, we compare the proposed method with alternative approaches, and provide comprehensive empirical evidence that f-AnoGAN outperforms alternative approaches and yields high anomaly detection accuracy. In addition, a visual Turing test with two retina experts showed that the generated images are indistinguishable from real normal retinal OCT images. The f-AnoGAN code is available at https://github.com/tSchlegl/f-AnoGAN.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app