Add like
Add dislike
Add to saved papers

Optimal currents for electrical stimulation of bone fracture repair: A computational analysis including variations in frequency, tissue properties, and fracture morphology.

Bioelectromagnetics 2019 Februrary
Fracture healing happens naturally in most bone break cases. Occasionally prolongation of restoration period or non-union of the fracture may occur, where electrical stimulation has been shown to facilitate bone restoration by stimulating osteoblasts. Despite clinical use, a comprehensive computational model linking the applied currents to the stimulating field in the fracture has been missing. In this paper, we investigate the input current needed to stimulate osteoblasts in a fracture in the human forearm. Optimal current is computed for various fracture configurations, and sensitivity to frequency and inter/intrapersonal variance in dielectric properties are analyzed. Stimulation thresholds at the fracture site are based on detailed review of experimental studies. Our results show that for a 1 mm thick 30° fracture with a 15 Hz sinusoidal field, the input current amounts to a maximum of 3.77 µA. Minimum and maximum required current levels are plotted versus fracture parameters, all of which comply with the ICNIRP standard. Simulation results are supported by several experimental reports. Our model is useful for understanding the effects of various geometrical and electrical factors on clinical outcome, and serves as a theoretical aid in the design of more efficient systems. Bioelectromagnetics. 40:128-135, 2019. © 2019 Bioelectromagnetics Society.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app