Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Review
Add like
Add dislike
Add to saved papers

Cellular and Molecular Mechanisms of Kidney Toxicity.

Toxicant-induced acute kidney injury is responsible for millions of deaths each year. An underlying cause of toxicant-induced acute kidney injury is renal cell death. As such, understanding the mechanisms by which toxicants cause renal cell death can aid the development of targeted therapies for the prevention and treatment of kidney disease. Accordingly, this article focuses on cellular and molecular mechanisms of nephrotoxicity. This article describes specific factors that make the kidney vulnerable to toxicants. Selective transporters and enzymes that are involved in toxicant uptake and metabolism in kidney cells, respectively, are highlighted. The role of reactive oxygen species in nephrotoxicity is discussed, followed by a review of the types of cell death pathways induced in renal cells after toxicant exposure, with a particular emphasis on the role of signaling pathways. Roles for the mitochondria, endoplasmic reticulum, and nucleus in renal cell death signaling pathways are discussed, and current challenges in the field are reviewed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app