Add like
Add dislike
Add to saved papers

Elimination of Cs + from aquatic systems by an adsorbent prepared by immobilization of potassium copper hexacyanoferrate on the SBA-15 surface: kinetic, thermodynamic, and isotherm studies.

For elimination of cesium from aqueous solutions, mesoporous SBA-15 was synthesized and employed as the support for immobilization of potassium copper hexacyanoferrate. The synthesized adsorbent was characterized by various techniques and was used for adsorption of cesium. The results indicated that its adsorption capacity was 174.80 mg/g and superior to many studied adsorbents. The adsorbent represented good selectivity in the presence of some studied co-existing. The Temkin, Redlich-Peterson, Sips, Langmuir, and Freundlich isotherm models were used to evaluate the experimental data. The error analysis performed by EABS, ERRSQ, and HYBRID methods showed that the data was in good agreement with the Langmuir model indicating that the process was monoenergetic and the uptake of cesium forwarded through monolayer process. The pseudo-second-order model was recognized as the adequate model to describe the kinetic data of the adsorption process. The adsorption process was endothermic and spontaneous. The regeneration tests revealed that the adsorbent retained most of initial capacity after recovery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app