Add like
Add dislike
Add to saved papers

Accurate prediction of maize grain yield using its contributing genes for gene-based breeding.

Genomics 2019 Februrary 29
Accurately predicting the phenotypes of complex traits is crucial to enhanced breeding in plants and livestock, and to enhanced medicine in humans. Here we reports the first study accurately predicting complex traits using their contributing genes, especially their number of favorable alleles (NFAs), genotypes and transcript expressions, with the grain yield of maize, Zea mays L. When the NFAs or genotypes of only 27 SNP/InDel-containing grain yield genes were used, a prediction accuracy of r = 0.52 or 0.49 was obtained. When the expressions of grain yield gene transcripts were used, a plateaued prediction accuracy of r = 0.84 was achieved. When the phenotypes predicted with two or three of the genic datasets were used for progeny selection, the selected lines were completely consistent with those selected by phenotypic selection. Therefore, the genes controlling complex traits enable accurately predicting their phenotypes, thus desirable for gene-based breeding in crop plants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app