Add like
Add dislike
Add to saved papers

Histone demethylase KDM6B regulates 1,25-dihydroxyvitamin D3-induced senescence in glioma cells.

Vitamin D is a fat-soluble vitamin and plays an important role in calcium absorption and bone development, whose lack can cause a variety of diseases, including cancer. Human epidemiological studies suggested that vitamin D3 deficiency might increase glioma incidence, but molecular mechanism is less understood. In this study, we show that 1,25-dihydroxyvitamin D3 (the active form of vitamin D3) induces senescence of glioma cells and increases the expression of senescence markers, INK4A and cyclin-dependent kinase inhibitor 1A (CDKN1A). 1,25-Dihydroxyvitamin D3 also upregulates the expression of histone demethylase, KDM6B. Knockdown of KDM6B attenuates 1,25-dihydroxyvitamin D3-induced senescence and upregulation of INK4A and CDKN1A. KDM6B promotes the transcription of INK4A by eliminating the trimethylation of repressive marker H3K27me3 near its promoter. This study reveals a new regulatory mechanism involved in vitamin D3 inhibition on gliomas, which is beneficial to prevention and adjuvant therapy of glioma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app