Add like
Add dislike
Add to saved papers

Arabidopsis Ca 2+ -dependent nuclease AtCaN2 plays a negative role in plant responses to salt stress.

Eukaryotic nucleases are involved in processes such as DNA restriction digestion, repair, recombination, transposition, and programmed cell death (PCD). Studies on the role of nucleases have mostly focused on PCD during plant development, while the information on nucleases involved in responses to different abiotic stress conditions remains limited. Here, we identified a Ca2+ -dependent nuclease, AtCaN2, in Arabidopsis thaliana and characterized its activity, expression patterns, and involvement in plant responses to salt stress. AtCaN2 showed a dual endonuclease and exonuclease activity, being able to degrade circular plasmids, RNA, single-stranded DNA, and double-stranded DNA. Expression analysis showed that AtCaN2 was strongly induced in senescent siliques and by salt stress. Overexpression of AtCaN2 decreased the plant tolerance to salt stress conditions, leading to an excessive H2 O2 accumulation. However, an atcan2 mutant showed better tolerance to salt stress and a lower level of H2 O2 accumulation. Moreover, the expression of several genes (AtAPX1, AtGPX8, and AtSOD1), encoding reactive oxygen species-scavenging enzymes (ascorbate peroxidase 1, glutathione peroxidase 8, and superoxide dismutase 1, respectively), was highly induced in the atcan2 mutant under salt stress conditions. In addition, salt-stress-induced cell death was increased in the AtCaN2-overexpressing transgenic plant but decreased in the atcan2 mutant. On the basis of these findings, we conclude that AtCaN2 plays a negative role in plant tolerance to salt stress. A AtCaN2 knock out could reduce ROS accumulation, decrease ROS-induced PCD, and improve overall plant tolerance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app