Add like
Add dislike
Add to saved papers

The plant-based chimeric antimicrobial protein SlP14a-PPC20 protects tomato against bacterial wilt disease caused by Ralstonia solanacearum.

Cecropin-B (CecB) is a peptide with well-established antimicrobial properties against different phytopathogenic bacteria. Despite modest action against Ralstonia solanacearum, its animal source limits the acceptance in transgenic applications. To overcome this, we selected eight alpha-helical (AH) cationic peptides derived from plant protein sequences and investigated their antimicrobial properties against R. solanacearum. Remarkably, PPC20 (a linear AH-peptide present in phosphoenolpyruvate carboxylase) has a three-fold lower lethal dose on R. solanacearum than CecB and lower toxicity to human intestinal epithelial cells. Linking PPC20 to SlP14a (part of a pathogenesis-related protein) established an apoplast-targeted protein providing a means of secreting and stabilizing the antimicrobial peptide in the plant compartment colonized by the pathogen. SlP14a is also a potential antimicrobial, homologous to a human elastase which likely targets outer membrane proteins in Gram-negative bacteria. Recombinant SlP14a-PPC20 showed antibacterial activity against R. solanacearum in vitro, making it a promising candidate for plant protection. This was confirmed with genetically-modified tomato plants engineered to express SlP14a-PPC20, in which bacterial populations in stems were reduced compared to inoculated wild-type control plants. Disease symptoms were also markedly less severe in SlP14a-PPC20-expressing plants, demonstrating a viable strategy to improve resistance against bacterial wilt in tomato.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app