Add like
Add dislike
Add to saved papers

Comparative study of simulated nebulized and spray particle deposition in chronic rhinosinusitis patients.

BACKGROUND: Topical intranasal drugs are widely prescribed for chronic rhinosinusitis (CRS), although delivery can vary with device type and droplet size. The study objective was to compare nebulized and sprayed droplet deposition in the paranasal sinuses and ostiomeatal complex (OMC) across multiple droplet sizes in CRS patients using computational fluid dynamics (CFD).

METHODS: Three-dimensional models of sinonasal cavities were constructed from computed tomography (CT) scans of 3 subjects with CRS refractory to medical therapy using imaging software. Assuming steady-state inspiratory airflow at resting rate, CFD was used to simulate 1-μm to 120-μm sprayed droplet deposition in the left and right sinuses and OMC with spray nozzle positioning as in current nasal spray use instructions. Zero-velocity nebulization simulations were performed for 1-μm to 30-μm droplet sizes, maximal sinus and OMC deposition fractions (MSDF) were obtained, and sizes that achieved at least 50% of MSDF were identified. Nebulized MSDF was compared to sprayed droplet deposition. We also validated CFD framework through in vitro experiments.

RESULTS: Among nebulized droplet sizes, 11-μm to 14-μm droplets achieved at least 50% of MSDF in all 6 sinonasal cavities. Four of 6 sinonasal cavities had greater sinus and OMC deposition with nebulized droplets than with sprayed droplets at optimal sizes.

CONCLUSION: Nebulized droplets may target the sinuses and OMC more effectively than sprayed particles at sizes achieving best deposition. Further studies are needed to confirm our preliminary findings. Several commercial nasal nebulizers have average particle sizes outside the optimal nebulized droplet size range found here, suggesting potential for product enhancement.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app