Add like
Add dislike
Add to saved papers

Cluster formation through hydrogen bond bridges across chloride anions in a hydroxyl-functionalized ionic liquid.

Several recent studies of hydroxyl-functionalized ionic liquids (ILs) have shown that cation-cation interactions can be dominating these materials at the molecular level when the anion involved is weakly interacting. The hydrogen bonds between the like ions led to the formation of interesting chain-like, ring-like, or distinct dimeric (i.e. two ion pairs) supermolecular clusters. In the present work, vibrational spectroscopy (ATR-IR and Raman) and quantum chemical theory (DFT) of the hydroxyl-functionalized imidazolium ionic liquid C2OHmimCl indicate that anion-cation hydrogen bonding interactions are dominating and lead to the formation of distinct dimeric ion pair clusters. In this arrangement the Cl- anions function as a bridge between the cations by establishing bifurcated hydrogen bonds with the OH group of one cation and the C(2)-H of another cation. Cation-cation interactions, on the other hand, do not play a significant role in the observed clusters.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app